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Abstract 

The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics 

Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF).  During each 

inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the 

optics.  The process of tracking growing damage sites on the surface of an optic can be made more effective by 

identifying and removing signals associated with debris or reflections. The manual process to filter these false sites 

is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining 

techniques to help with this task. We describe the process to prepare a data set that can be used for training and 

identifying hardware reflections in the image data.  In order to collect training data, the images are first 

automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and 

luminosity measures are extracted for each site. A subset of these sites is “truthed” or manually assigned a class to 

create training data.   A supervised classification algorithm is used to test if the features can predict the class 

membership of new sites. A suite of self-configuring machine learning tools called “Avatar Tools” is applied to 

classify all sites.  To verify, we used 10-fold cross correlation and found the accuracy was above 99%.  This 

substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation. 

Introduction 

The Final Optics Damage Inspection (FODI) camera system is inserted in the center of the NIF target chamber after 

a laser shot to acquire images of any or all of the final optics for all 192 beamlines [1]. The acquired images are 

processed using custom image processing & analysis software[2,3], referred to as the Optics Inspection (OI) 

package, to detect anomalies on the surface of the optics,  with the intention of identifying and tracking laser-

induced damage.   This software then computes a number of measurements for each site, such as area, diameter, 

intensity, edge strength, aspect ratio, etc.  These measurements are then used to provide information on the condition 

of each optic to the operators of NIF.  This task is complicated by artifacts which are difficult to distinguish from 

real damage sites.   

Figure 1 illustrates the difficulty caused by one particular type of artifact, namely light reflected off the equipment 

used to support the beamline optics, which we will refer to as a hardware refection.   Any reflections identified as 

such can be discarded preventing wasted time and effort on the intensive investigations and calculations that are 

applied to sites suspected of being damage sites.  In the past such reflections have been identified by a person 

looking at each image.  This process is both tedious and extremely time consuming.  In this work we use data 

mining and supervised machine learning techniques to reexamine the data previously compiled by the OI and 

discard signals due to hardware reflections. 



 

Figure 1: shows an example of a FODI image.  Possible damage sites are the small dots identified by a red circle around them.      
The bright dot at the end of a thin line is a reflection from nearby hardware that was falsely identified by the image analysis 
software as a possible damage site.  The purpose of this study is to automatically distinguish the two by applying machine 
learning algorithms. 

Background on Data Mining & Machine Learning 
Data mining is defined as the process of extracting hidden, previously unknown, and potentially useful information, 

knowledge, or patterns from data. Specifically in [4] Fayyad et al. defines Knowledge Discovery in Databases 

(KDD) as the process of discovering useful knowledge from data; and data mining is applying the algorithms to 

extract the knowledge from data [5]. In this paper we don’t differentiate between the two activities. We spend a 

good time interacting with the database to extract the relevant data and ask the correct questions relevant to the 

practical use case.       

A simple definition of learning is “things learn when they change their behavior in a way that makes them perform 

better in the future” [5]. A machine can learn by observing examples of behavior (e.g. training data) and creating a 

model for the observed behavior in memory. When a new instance is observed, the machine can use the stored 

model to give a label or classify this instance. This is why building a model depends heavily on training data that 

hopefully contains certain patterns with respect to the feature values of the data. For example, in this work we utilize 

sites previously identified as reflections by humans to compile a training data set. And then use classification 

algorithms to find a set of features which are likely to be associated with sites identified by humans as hardware 

reflections.  We can then use the same classifier to identify additional reflections among sites not inspected by 

humans by looking at the relevant features. The sites we will be considering will be classified by looking at the 

preponderance of the features, not individual features.  



Building a model from training data 

 

Figure 2: The process to prepare a model for data classification 

Figure 2 shows the steps that we followed in order to prepare the training data set and choose the classifier. The 

process includes retrieving data from the database, creating an initial training set, running verification tests, iterating 

over the training data, validating it with new instances and finally compiling a pristine data set that can be used to 

generate a model and classify new instances. In the following sections we will describe the process in details.   

Mining the database for truth data
1 

The first step was to retrieve, from the database, potential damage sites and their classifications as defined by the 

human experts.  Since multiple experts contributed labels for the data in a relatively unconstrained way, no 

standardized categories were used to describe the sites they examined.   

Our first task was to group the user entered comments into three standard classes:  hardware reflection, not a 

reflection, and unknown.  For example, users designated various sites as a “Reflected Flaw”, “On Another Surface”, 

or as a “Defect” all of which are positive identifications as some feature other than a hardware refection and 

included as the category “Not a Reflection”.  Conversely a number of other monikers could be interpreted as 

positively identifying a site as a “hardware refection”, putting the site in that category. In cases where the comments 

were not decisive we classified the site into the third, unknown, category.  Figure 3 shows an image of each class to 

illustrate the difficulty in distinguishing between them. 

 

Figure 3: Examples of sites classified as: a) hardware refection, b) defect, not hardware refection, and c) unknown. 

                                                           
1
 We call the data with the correct classes assigned “the truth data” 



Retrieving the data from the database, and collapsing the myriad of comments into three classes, though mundane, is 

the most important step.  Indeed first determining appropriate classes and then mapping the available data into them 

is typically the rate limiting step in the use of a machine learning classifier. Once we have the data with the correct 

classes assigned, we can pick from several classification algorithms using several publicly available machine 

learning tools such as Avatar [6] or Weka [7]. The eventual number of instances from the database classified into 

each category is 1198 hardware reflections, 563 non-reflections, and 1898 unknown.  Because the optics are imaged 

repeatedly over time, a particular site can be represented more than once, that is why sometimes we refer to a site as 

an instance. 

The techniques by which each individual site is identified from the FODI image are beyond the scope of this work 

and described elsewhere [2].  The function of the automated OI Analysis is to detect candidate sites and extract 

various attributes or features from the FODI images.  Table 1 lists some of the features that OI automatically 

calculates from a background-subtracted version of the original image.  Some features are global, such as where the 

site is located on the optic, while others are local and use only information from pixels near the location.  

 

Table 1: The attributes OI extracts from the FODI images.   All values refer to pixels in or near the extent of the detected site 
and are measured on a background-subtracted version of the original image. 

Area in pixels Angle of long axis Standard deviation of pixel values 

X location on optic Short axis of best fit ellipse Background Mean 

Y location on optic Sum of all pixel intensity values Maximum pixel intensity value 

Long axis of best fit ellipse Mean intensity Minimum pixel intensity value 

While some of the measurements shown may seem to be less useful than others, it turns out these shown, and others 

not shown, all contribute in some way and it does not hurt to include any and all of them. Overfitting a model is not 

a problem for the “ensemble of decision trees” classifier used in this study and irrelevant attributes are simply 

ignored.  For example, salient features (measurements) that might distinguish a red apple from a baseball and a fire 

truck would almost certainly include color and size, but these are not sufficient.   There is too much overlap of these 

features among these objects.  If we add more diversified features, we can extract subtler characteristics and improve 

our ability to distinguish them.  For this simple case, we could add features such as shape (perhaps measured as 

aspect ratio, circularity or ellipticity), how the size compares to the 3-inch diameter of a regulation baseball (“yes”, 

”no”, and other semantic features are allowed), texture measures, how many corners or vertices are included in the 

shape and so on.  The more features, the more refined the separations between these and other, similar objects may 

become.  The use of many features becomes even more important for separating three classes of objects rather than 

three unique objects because the overlap in any feature may increase substantially due to variations within the 

individual class.  E.g. if toy fire trucks are part of the fire truck class the overlap in the size feature changes 

significantly.   When the classes that need to be distinguished are as similar as those investigated here (hardware 

reflections and not reflections) a large number distinguishing features becomes critical.  

Testing the data with a machine learning classifier 

Once a sufficient number of features have been indentified (often an iterative process) and quantified, we then need 

to test the data using a classifier.  A classifier is simply a set of rules which codifies what combination of feature 

values best identifies individual classes. Luckily there are several available classification algorithms that can be used 

off the shelf. We first used Weka [7] because of its user interface that includes several other visualization tools 

which can be used to plot and review results.  For production we used Avatar for its performance since it is a C/C++ 

based tool and is already integrated into OI.   



The explorer module in Weka allows a user to choose from several classifiers to test the data. We used Weka to 

examine the contribution of each feature listed in table 1 for relevance.  The most relevant features included the 

intensity of the signal with respect to the background followed closely by the global location of site and the signal to 

noise surrounding the site.  Using the top four features allowed the classifier to reproduce the opinion of the human 

experts with 96% accuracy, by including all the features and using the “ensemble of decision trees” available only in 

Avatar [6], the accuracy rose to 99.8% (see table 2)  

Table 2: Classifier results 

A 

C 

T 

U 

A 

L 

CLASSIFIED AS 

 Hardware 

Reflections 

Not Hardware 

Reflections 

Hardware Reflection 855 2 

Not Hardware Reflection 1 903 

Correctly classified Instances: 1758/1761      99.8% 

Incorrectly classified instances: 3/1761        0.17% 

 

The matrix with the four numbers in table 2 is called the confusion matrix. It shows how many instances in the 

original data belong to each class and how many were predicted correctly. The bold numbers (diagonal numbers) are 

the numbers of instances that were predicted correctly. For example, there were 855 instances that were classified as 

Not-Hardware-Reflection and two were classified as Hardware-Reflection. The 10 fold Cross Validation test splits 

the data into two separate data sets one for learning; normally 2/3 of the original data is used for training and 

building a model while the rest is used to test the ability of the model to predict the classes correctly. The process is 

repeated 10 times and the results are reported as an average of the 10 tests. 

Applying the classifier to the unlabeled data 

The third group in figure 3 (the unknown class), are the instances which could not be given a label because the 

comments were vague or the human experts could not make a determination.  When we applied the classifier 

developed with the use of the truth data, we were able to make determinations for the previously unknown class.   

We assigned all of the sites from the unknown class to either hardware reflections or not hardware reflections (see 

figure 4).  Avatar was used in this step to grow an ensemble of decision trees using the following options: --use-

stopping-algorithm (use out-of-bag validation to automatically determine optimal number of decision trees to use for 

voting) 

--bagging  (select from original dataset by sampling with replacement) 

--split-method=HELLINGER (Use a splitting algorithm that is more impervious than InfoGain to having under-

sampled classes) 

 



Number of instances Classified as 

604 Not-Hardware-

Reflection 

1294 Hardware-Reflection 

Figure 4: The 1898 previously unknown sites were classified as Hardware reflections or not using the same classifier which 
had a 99.8% accuracy when the answer was known 

Discussion and future work 

In this paper we show that the use of machine learning to classify and filter hardware reflections is an effective 

approach, which achieved 99.8% accuracy. These positive results depended first on the availability of feature data 

that includes the metadata and measurements for each defect candidate and on collecting expert truth for that data.  

Lastly, it required that we iterate on the steps of refining the truth data.  Although the comments entered by the 

experts varied greatly, we collapsed them to a small number of classifications and used them as truth data.  This data 

set was used with the ensemble of decision tree classifier to predict the categories of the “truthed” sites as well as 

additional sites that had not been inspected by human experts.  These new results were evaluated and when possible, 

added to the training set and the process was repeated. 

The successful results of this work, culminating in the generation of an ensemble of decision trees classifier, has 

been incorporated into the daily operations for NIF Optics Inspection Analysis and we will continue to apply 

machine learning techniques to refine, characterize and interpret the data stream coming from the FODI and OI 

Analysis systems.  
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